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a b s t r a c t

Microorganisms from damp indoor environments are known to be one of the main causes of the
degradation of indoor air quality and can be serious health hazards to occupants because of the pro-
duction of airborne particles. Surfaces of building materials (plasterboard, mortar, etc.) are generally
highly porous and rough. In damp environments, these materials can provide an environment favourable
to proliferation and growth of microorganisms. Sampling of microbial communities on building mate-
rials, in addition to air sampling, is thus necessary to evaluate microbial proliferation indoors.

The present paper aims to (i) summarise and compare the different methods used for sampling and
analysing microbial growth on building materials and (ii) make a synthesis on the colonising microbial
communities and the building materials parameters (humidity, chemical composition, pH, etc.) affecting
their growth.

With regards to methods, our investigations focused exclusively on studies dealing with building
materials. When available, studies comparing the efficiency of methods on building materials were
discussed. In-situ sampling campaigns were reviewed and the microorganisms identified on building
materials were listed. Factors determining bio-receptivity of materials were also examined on the basis of
studies performed on various types of materials (including building materials).

The microorganisms the most frequently detected on indoor building materials are (i) fungi genera
Cladosporium, Penicillium, Aspergillus and Stachybotrys, and (ii) Gram negative bacteria and mycobacteria.
Some correlations between microbial genera/species and the type material can also be outlined. The
water activity, the chemical composition, the pH and the physical properties of surfaces are parameters
influencing microbial growth on materials. The particular behaviour of porous materials in terms of
water sorption and the effect of water on microbial proliferation are underlined.

In the future, the standardisation of methods for sampling, analysis and laboratory testing will be
helpful in the assessment of microbial proliferation in building materials. Moreover, investigations on the
impact of the material's mineralogy and its surface properties on growth will be necessary for a better
understanding and predicting of microbial proliferation on these substrates.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The degradation of indoor air quality induced by microorgan-
isms (moulds, bacteria, fungi) is of growing concern to international
health organisations [1e3]. In Northern Europe and North America,
it is estimated that between 20 and 40% of buildings are
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contaminated by indoor mould [2]. The World Health Organisation
has already published guidelines for indoor air quality related to
humidity and mould [1].

Several hundreds of fungal and bacterial species can be found in
indoor environments [2,4,5]. Fungi, mainly Cladosporium sphaer-
ospermumn, Penicilium chrysogenum, Aspergillus niger, Aspergillus
versicolor, Alternaria alternata, Stachybotrys chartarum, and bacteria,
mainly large groups of Gram negative bacteria and mycobacteria
are all microorganisms usually found inside dwellings and other
buildings. Theymay produce contaminants, i.e. aerial particles such
as spores, allergens, toxins and other metabolites that can
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contribute to the degradation of indoor air quality and be serious
health hazards to occupants [6e13]. The most significant health
troubles experienced by exposed people include irritations and
toxic effects, superficial and systemic infections, allergies and other
respiratory and skin diseases [14e21]. The resulting social and
economic impact is very significant [17,22]. For example, in the
USA, Mudarri and al. estimate that more than 4.5 million cases of
asthma result from exposure to damp and mould and the annual
economic cost is approximately $3.5 billion [21].

According to F. Squinazzi, indoor air micro-organisms have four
main sources [23]:

- humans, through the production of saliva, nasal droplets and
skin flakes; contaminated water tanks (showers, mist blowers
and sprayers, etc.) which spread micro-droplets in the
atmosphere;

- dusts induced by activity in buildings and that become sus-
pended in the air;

- wet surfaces, which become major sites of microbial growth
once contaminated by contact with a source of microorganisms
(human, animal, clothing, dust, etc.).

The direct evaluation of air samples to estimate health risks to
occupants has been widely reported over the last few years
[17,24e26]. The extent of exposure to these microbial airborne
particles and the associated risks are related to many parameters,
such as genera/species of microorganisms (which determine a part
of the contaminants), exposure pathway (inhalation or contact
with skin/eyes) and environmental conditions (convection, etc.),
total area of microbial growth, aerosolisation of contaminants, etc.
[27]. Many authors have suggested that aerial samples are not
sufficient to describe the entire microflora present inside buildings,
especially in water-damaged buildings [28e30] and identifying
microorganisms established on building materials of the indoor
environment, collected by surface sampling, has been shown to
provide relevant information about the potential sources of
airborne microbial contaminants [29,31]. In addition, species pro-
ducing mucilaginous spores, that remain attached to substrates,
require the use of surface sampling methods to draw up an in-
ventory of the full microbial biodiversity [29]. Although microbial
communities on surfaces are nor directly correlated with health
troubles of the occupants, the French High Council for Public Health
recommends sampling such communities on building materials, in
addition to air sampling, in order to evaluatemicrobial proliferation
indoors [2].

Swab, adhesive and contact plate sampling, along with bulk
sampling, are techniques commonly used on the surface of building
materials to collect microorganisms and microbial contaminants
prior to analysis. The sampling method, in addition to the analysis
method, e.g. culture, observation, chemical or molecular method
used for microbial quantification or identification, will have an
influence on the pattern prevalence in the results. Studies investi-
gating the microbial growth on building materials, including lab-
oratory testing, report the impact of several factors on themicrobial
development. One of the main factors is the water available for
microorganisms. Available water is responsible for microorganism
germination and growth on various types of building materials
[27,32e35]. The chemical composition of the substrate, here
building materials, also influences growth, as it is a potential
nutrient supply for microorganisms [8,32,36,37]. Studies reveal
that some specific taxa are detectedmore frequently than others on
certain building materials [11,27,38]. In the particular framework of
building materials, porosity and roughness are fundamental pa-
rameters as they can promote water absorption and dust attach-
ment. Various studies point out that these physical parameters
have a significant impact on the colonisation of materials by mi-
croorganisms, for example by promoting attachment in the asper-
ities [39e41] or supplying moisture and nutrients [36,37,41].

This review first describes the variousmethods for sampling and
analysis in studies dealing with microbial growth on building ma-
terials. These methods, commonly used in microbiology, are
applied to particular materials here, such as gypsum board, mortar,
concrete, etc., that are all porous materials but with very different
compositions. The microorganisms commonly found are then
presented. In a second part, the specific procedures related to the
exposure of building materials to microorganisms in laboratory
conditions are presented. Different parameters that govern mi-
crobial growth on these materials are also discussed. The present
paper aims to outline the microbiological methods used for
assessingmicrobial growth on buildingmaterials and to emphasise,
in addition to the conclusions of the relevant studies, the need to
adapt existing standards and methods for these types of rough and
porous materials with particular chemical compositions.

2. Methodologies for characterising microbial communities
on building materials

The following section aims to give a comprehensive list of the
methods used in microbial investigations on building materials.
Concerning both sampling and analysis, only the methods carried
out on building materials are reported here. Regarding sampling,
methods used a) in-situ and b) in laboratory experiments are
described. When available, studies comparing the efficiency of the
method with respect to building materials are also reported.

2.1. Micobial sampling methods

Different methods exist for sampling microbial populations on
materials: swab, bulk, adhesive, contact plate, etc. but the in-situ
collecting process has not been well standardised yet. Moreover,
although many of these methods have been tested to evaluate their
collecting efficiency on non-porous and non-absorbent surfaces
(glass, steel, plastic, etc.), few studies have concerned construction
materials such as concrete, coatings, mortar, and gypsum board,
which are porous, rough and more or less dusty materials. The
“Mould in the home”working group of the French High Council for
Public Health has issued methodological recommendations for
sampling on surfaces of building materials and suggests the use of
at least two of the following surface sampling methods: swab, bulk
sampling, adhesive tape and agar contact (imprint methods) [2].

Fig. 1 shows the frequency of use of various techniques in
studies carried out on construction materials (for 33 studies
considered).

2.1.1. Swab
Swab sampling consists of rubbing a contaminated surface area

with a sterile gauze swab generally dipped in physiological solu-
tion. It is a relatively low cost system allowing samples to be
collected under all circumstances. Swabbing is usually chosen
when imprint or tape methods are impossible owing to difficulties
in accessing the surface [6,42], for example when samples are
collected in corners of walls or under window sills [10,30,43,45,46].
Several studies point out the influence of many parameters on the
efficiency of the swab sampling method, including: handling by the
operator [2], swab type (cotton, foam, viscosin, polyester, nylon)
and whether the swab is wet or not [47,69e71].

In addition, Buttner et al. [44] highlighted the major influence of
the substrate material properties on the sampling efficiency. They
compared the recovery efficiency between swab and sponge sam-
pling on different materials. They quantified microorganisms by



Fig. 1. Surface sampling methods used in studies on construction materials. Percentage of use calculated on 33 studies.
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PCR analysis1 and calculated efficiency by dividing the number of
cells collected by the number of cells inoculated. The authors
explained that the estimated recovery efficiencies were affected by
the samplingmethod and the material of the sampled surface. Also,
the largest values were found for smooth, non-porous material:
52% and 47% for glass and 29% and 11% for wood laminate, using
swab and sponge sampling respectively. In contrast, recovery effi-
ciencies were only around 0.8% and 0.7% for concrete.

2.1.2. Bulk sampling
Bulk sampling is a destructive method in which samples are

directly removed from the surface to be analysed, by scratching,
scraping or coring of small pieces of the material (0.3e5 g). It is the
most widely used sampling technique in microbial assessment on
building materials (Fig. 1) [9,11,20,30,43,48e62]. Microorganisms
can be isolated by bulk sampling in two ways: (i) direct plating of
the sample onto a culture medium, (ii) microbial solution plating
onto a culture medium [72]. In the latter case, bulk samples are first
dipped in a physiological saline solution or rinsed with solvents
according to various protocols to extract the microorganisms;
dilution steps are then possible before plating. Samples can also be
removed so as to be properly observed under a microscope [11].

2.1.3. Adhesive tape sampling
An adhesive tape is applied to the contaminated surface. The

surface should preferably be flat and dry before the sampling. Then,
it is possible to inoculate the microorganisms onto plates by
applying the tape to a solid culture medium [50,63,66] or to
observe them with a microscope in order to identify them and/or
perform semi quantification [6,11,27,64,65,73].

2.1.4. Contact plate sampling (imprint methods)
A culture medium is directly pressed against the surface for

enough time to allow the adhesion of microorganisms. Then, the
plates are protected from air contamination by a lid and incubated
[6,28,42,50,63,67]. Some studies have shown that the extractability
of microorganisms depends on various parameters, notably time
and pressure on the plate [2,6]. For this reason commercial appli-
cators are usually designed for a defined time and pressure.

2.1.5. Other methods
Shirakawa et al. performed fungal isolation using the Mariat and

Adan-Campos carpet-stamp technique [74]. It consists of rubbing a
small piece of sterilised wool against the surface to be tested [68].
This method is more often used in the medical field to isolate fungi,
e.g. in cases of mycosis on skin. The wool is then placed on a culture
medium.
1 See Section 2.2 on the different methods of analysis.
In another study, Brown et al. [61] evaluated the sampling effi-
ciency of a vacuum filter sockmethod on Bacillus atrophaeus spores.
Spores were collected from the contaminated surface with a vac-
uum pump system and retained on a filter sock, then extracted by
sonication. The collection efficiency was calculated as the ratio
between the number of Colony Forming Units enumerated from the
filter sock sample and the number of CFU enumerated from a
reference stainless steel coupon from which spores were directly
extracted by sonication. Results showed between 19% and 29% of
collection efficiency for stainless steel, painted wallboard, carpet
and concrete. The authors mention that these differences in effi-
ciency between the various materials are not statistically signifi-
cant. Although the technique is not as efficient as swab methods, it
provides the capability to sample a larger area. It should be noted
that the detection limit was between 105 and 160 CFU per 100 cm2

for all material tested [61]. Many authors emphasise the need for
standardisation of the protocols for microorganism sampling on
construction materials [2,6,10,48,58]. At present, results can be
influenced by the operator and many other factors, including the
sampling technique itself and its different steps (sampling location,
pressure applied, conservation of strains, etc.), the analysis method
(observation, chemical, molecular, etc.) and/or the chosen culture
medium. There are far too few studies that compare the collection
efficiency of the various techniques applied to given building ma-
terials and few papers that deal with the influence of the material
type. Moreover, the number of microorganisms collected from a
surface is likely to depend on the species and the stage reached in
the adhesion and biofilm formation process. This aspect has also
been little studied to date.
2.2. Analytical methods

Many analytical methods may be used to carry out quantitative
or qualitative assessments of microorganisms on a substrate. The
choice of an appropriate method for microbial analysis depends not
only on its duration and cost but especially on the aim of the
investigation. The following section describes the main analytical
methods found in the literature concerning microbial growth on
building materials: culture-based methods, observation methods,
chemical methods, and molecular biological methods.
2.2.1. Culture-based methods
Microorganisms may be cultured prior to any analysis for

quantitative and/or qualitative microbial assessment of surfaces,
depending on the aim of the study. The culturemedium has a major
impact on microorganism growth. Owing to their specific chemical
nature, some culture media, called selective media, can be used to
isolate selected species/genera by promoting their growth at the
expense of other microorganisms. Samson and co-workers
recommend the use of specific culture media depending on the



Fig. 2. Observations using epiflurescence microscope (�40) of Listeria monocytogenes 10357 (A: Stationary phase of cell growth; B: Disinfection control; C: Disinfection testing)
[84].
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type of analysis and themicroorganisms to be studied [14]. Culture-
based methods are widely used and are recommended by various
standards. Quantitative assessment can be achieved by counting
the number of active Colony Forming Units (CFUs) developed on a
plate. This number is considered to represent the number of cells
(or spores) initially presents on a sample and can be related to a
given mass, volume or surface of the sample. Although direct
identification and quantification by culture-based methods are
quite simple to perform, in most cases, they are relatively time-
consuming.

In recent years, authors have agreed that the exclusive use of
culture-based methods is not sufficient to characterise a contami-
nated area with high accuracy, because of the many possibilities for
introducing bias. These methods are usually more sensitive than
other analytical methods to the sampling quality [45] and they only
detect fractions of all the microorganisms present on a sample
[2,6,75e82]. In particular, they detect active forms that are capable
of growth but not slow-growing microorganisms or inactive forms
(viable non-culturable) or non-viable forms. In addition, isolation
prior to identification requires various types of cultures to be
implemented because of the different nutritional and environ-
mental needs of a microbial population and therefore induces a
heavier work load.

An in-situ sampling campaign by Santucci et al. [6] showed that
fungal patterns identified after culture-based methods following
swab and imprint sampling were different from those found by
direct observations on adhesive tapes. The identification of genera
after culture reached 87% of the number identified by direct ob-
servations. On the other hand, direct observations identified only
42% of the genera identified after culture only [6].

Quantitative assessment tends to underestimate populations and
especially inter-species ratios. The advantages of qualitative assess-
ment are the isolation and preservation of strains. Identification by
simple visual observation is also possible and quite accurate [6].
2 Staining method for differentiating bacterial species into two groups: Gramþ
and Gram� depending the chemical composition of cell wall.
2.2.2. Observation methods
Quantitative measurement of microbial communities on sam-

ples is based on direct counting (CFU, fungal propagules etc.) or on
tagging with fluorescent stains followed by image analysis to semi-
quantitatively estimate the proliferation on surfaces (Fig. 2). Fungal
identification, at species or genus level, can also be achieved
through the observation of specific morphological features. Such
identification requires particular skills [2,6,73]. Samson and Flan-
nigan are widely quoted for their detailed descriptions of fungi
(Fig. 3) and their identification method based on morphological
observations [15,83].

Due to the limited diversity of bacterial morphologies, their
identification by observation is rare. Populations can be classified
by Gram staining2 but strict identification of a genus or a species is
usually achieved by chemical (in reaction tubes) or molecular bio-
logical analysis.

Whether the cells are culturable or non-culturable, viable or
dead, direct observation methods using microscopes and/or fluo-
rescent dyes can show the whole microflora adhering to a
substrate.

For example, optical microscopy (bright/dark field, phase
contrast, fluorescence) enables microbial cells to be detected on a
substrate up to a maximum resolution of approximately 0.2 mm
[85]. A microscope may be fitted with a haemocytometer, which is
commonly used by microbiologists. This device consists of a glass
slide divided into chambers with a grid having known bounded
areas. After dropping a microbial suspension onto the slide and
waiting for microorganism sedimentation, it is possible to count
the number of cells in a specific volume or area and therefore es-
timate the initial concentration of cells in the suspension
[54,66,86].

During recent years, some studies in microbiology have used
epifluorescence microscopes. The principle is based on the irradi-
ation of a fluorochrome, which is fixed to the DNA (deoxy-
ribonucleic acid) by an operator, with specific wavelengths of light.
The advantages are rapid and representative assessments of
adhered biomass [84] or the concentration of spores in a fluid [86].



Fig. 3. Illustration of the typical morphology of the genera Aspergillus (a) and Cladosporium (b) [83].

Table 1
Compounds/components and techniques for chemical analysis of microorganisms
collected on building materials.

Microbial metabolites e
cell chemical compounds
analysed

Techniques Microorganisms References

a
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In addition, the use of such a device to study building materials
could be attractive because the observations do not require a
transparent substrate. In her works, Allion developed a quick pro-
cedure to evaluate the viability of microorganism in-situ by direct
tagging of adherent cells. However, thick clusters are quite difficult
to observe, as are fungi in the filamentary state of growth. Some
microorganisms can also resist tagging. Other works by M�eheust
have combined epifluorescence and flow cytometry technology,
generally employed for microbial assessment of water or waste-
water, in order to quantify fungal populations on surface samples
collected in a hospital [47]. Here, the principle is based on the high-
speed scrolling of microbial cells in a liquid stream through a laser
beam (single wavelength). Results are obtained from the light re-
emitted by the cells. The technique differentiates between viable
and non-viable cells but cannot be used for every kind of envi-
ronment because the signal can be perturbed by dust.

Finally, electron microscopes (transmission, scanning, confocal)
have also been used. Like epifluorescence microscopes, these de-
vices do not need a transparent substrate and are therefore
commonly used for microbial investigation on building materials.
Observations of surfaces and cross sections may show damage due
to the penetration of fungal hyphae inside the matrix [66,87]. The
technique can also be used to estimate the number of fungal
propagules from adhesive tapes [11] or to observe the fungal
growth directly on the substrate through Scanning Electron Mi-
croscope observations [38,88]. Adan carries out Low Temperature
Scanning Electron Microscope observations to study fungal growth
on gypsum-based finishes [88].
Endotoxins LAL Fungi [11]
Mycotoxins HPLCb, TLCc, GCd,

GC-MSe, ESI-MSf
Fungi [7,9,49,93]

Cytokines ELISA Fungi [86]
Nitric oxide (NO) Griess testg Fungi [86]
Glucans LAL, Hydrolysis Fungi [11,37]
Chitins Hydrolysis, ICh Fungi [37]
Ergosterol HPLC, TLC, GC,

GCeMS
Fungi [5,7,52,53,55,

60,62]
3-Hydroxy-fatty-acids GCeMS Gram� bacteria [55]
ATPi Bioluminescence Bacteria [46]

a Limulus amebocyte lysate.
b High-pressure liquid chromatography.
c Thin layer chromatography.
d Gas chromatography.
e Gas chromatographyemass spectrometry.
f Electrospray ionisation-Mass spectrometry.
g A test using Griess reagent which detect the presence of organic nitrite

compounds.
h Ion chromatography.
i Adenosine Triphosphate.
2.2.3. Chemical methods
Various chemical methods can give much information related to

microorganisms. They are most often used to estimate the meta-
bolic activity and thereby the toxicity potential of a microbial
population on a substrate. The relevance of methods involving the
measurement of chemical components from microbial cells de-
pends on the choice of the components to be considered. Two
possibilities are:

- Measurement of the chemical components composing the micro-
bial cells such as components that form the mycelium cells for
fungi (ergosterol, chitin) [37,53,55], adenosine triphosphate
(ATP) which is an energy-producing molecule, and poly-
saccharides of the cell walls (b-D-glucane) [11]. The quantity of
components can be linked to the number of microorganisms or
it can be correlated with the type of microbial species. These
methods are also suitable when microorganisms are in an
inactive form.
Since Seitz's works, the ergosterol content is widely deter-
mined to monitor microbial growth in food industry studies
[89] and, as shown in Table 1, in studies on building mate-
rials. This method is widely believed to provide good esti-
mates of fungal biomass [53], and numbers of spores and
CFUs [5,90]. However, some authors point out that the esti-
mation of the ergosterol content of materials depends on
many factors, such as the type of material, the moisture
content, the microorganism species and age, and the growth
conditions [53,90e92]. According to Nout et al., identifying
fungal biomass grown on natural substrate by a comparative
quantification of the ergosterol produced by the fungi in
culture is not possible because of variations induced by the
testing parameters (age of strains, medium used, air stream).
In contrast, temperature does not seem to have a significant
effect on ergosterol production [91].
- Measurement of chemical compounds produced by microorgan-
isms such as nitric oxide [86], various toxins (endotoxins,
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mycotoxins, etc.) and other metabolites sampled from a surface
[9,11,93]. This is an indirect method for assessing the metabolic
(or biological) activity of microorganisms and thus estimating
the microbial population. This type of method is generally used
to assess the quantity of potentially deleterious compounds
(metabolites on substrates or volatile compounds) and to
deduce the pathogenic potential of the environment sampled
and the resulting health hazard.
According to Tuomi et al., in most cases, there is no signifi-
cant correlation between the presence of fungal species and
the expected compounds [9]. Moreover, various metabolites
can be produced by a single species [93]. Production can
occur at specific times of microorganism growth (e.g. sec-
ondary metabolites are generally produced in the latest
stages of growth). Analysis of microbially produced chemical
compounds reveals more about the cell state at a given
moment than about the number of microorganisms.
After culture and biophysical isolation of microorganims,
biochemical methods are used in qualitative investigations of the
reactions generated upon contact with specific substrates
(Analytical Profile Index type system) [37,67].

There are also immunological methods based on the interaction
between an antigen and specific tagged antibodies (animal or hu-
man) that enable the antigeneantibody complexes so formed to be
detected and quantified. Muretoniemi et al. used the ELISAmethod
(Enzyme-Linked Immunosorbent Assay) in order to evaluate
metabolic activity through the cytokine level [86]. The LALmethod
(Limulus Amebocyte Lysate) was used on building materials by
Andersson [11] for endotoxin measurements on water-damaged
building materials. These tests are convenient by their relative
ease of implementation and their low price.

The chemical compounds/components and techniques for
evaluating surface contamination are presented in Table 1. Chro-
matography (thin layer, high performance liquid, gas, ionic) and
mass spectrometry are the main analytical techniques employed
for these measurements.

2.2.4. Molecular biological methods
Methods using recombinant DNA are based on the isolation of

specific DNA sequences in order to target a particular phenotype,
which is the signature of a group of microorganisms.

Since it was invented in the 1980s by K. Mullis, PCR (polymerase
chain reaction) has become an essential tool in most studies of
microorganisms [85] as PCR-based methods enable the detection,
identification and even quantification (Rt-PCR) of microorganisms
present in a sample. The process is based on the use of two primers,
the function of which is to bind to a DNA region that is specific to a
species or a larger group.

These methods can be expensive but they offer rapid and sen-
sitive assessment of cultivable and non-cultivable organisms. On
the other hand, no distinction is made between viable and dead
cells. In their work on fungal contamination of moisture-damaged
dwellings, Bellanger et al. found Stachybotrys chartarum on 21
samples using Rt-PCR while only one was isolated with a culture-
based method [10]. This targeting approach requires some pre-
liminary knowledge of the organisms likely to be present on the
substrate and a data bank to select DNA sequences and the corre-
sponding primers. Some authors have scanned a large diversity of
prokaryotes by targeting the DNA 16S region (18S for eukaryotes)
[11,56,59,86] while other studies have selected more specific re-
gions such as ITS (internal transcribed spacer) for fungi [94e98].
This highlights the interest of coupling PCR with other techniques
such as RFLP (restriction fragment length polymorphism) to add a
degree of specificity. According to several studies, molecular
biological methods give a more accurate view of microbial com-
munities than culture-based methods alone [44,56].

Microbiological methods are relatively numerous and varied.
Regardless of the method used, it is essential to distinguish two
analytical approaches: targeting specific species or analysis of the
overall population. Targeting is generally more time consuming.
Overall analysis is faster but it has a much higher limit of detection
and may thus not detect populations present in smaller quantities.
In the 1990s, for example, studies showed that the use of PCR
coupled with denaturing gradient gel electrophoresis (DGGE)
detected microbial populations that made up at least 1% of the total
community [99,100]. Assuming that the total community contained
106 microbial cells, this technique enabled populations of 104 cells
to be detected, but any population with a smaller number of cells
was not detected. To remedy this, species targeting approaches are
necessary, using either a molecular biological approach or several
selective media (culture and observations).

Overall, several methods are available for sampling and ana-
lysing microbial agents on building materials and the results ob-
tained are linked to the method chosen: for example, a chosen
culture medium could promote the growth of one species at the
expense of another and lead to some microorganisms being
masked in the measurement. For sampling and analysis processes,
particular attention must be paid to the handling of samples. The
need for methodological standardisation has been raised by many
authors. For example, various measures can be found in the liter-
ature for quantitative assessment, which makes the comparison of
results quite difficult. Criteria such as surface coverage, amount per
square meter, toxicity potential, etc., should be unified to evaluate
microbial contamination of building materials.

3. Overview of in-situ sampling campaigns and
microorganisms identified on building materials

Since the late 1990s, in-situ prospection studies have been car-
ried out in order to better understand the links between microor-
ganisms in an indoor environment and health hazards for the
occupants. Although a direct correlation between surface samples
and occupants' diseases is difficult to establish, various authors
point out that an estimation of the level of contamination of
buildingmaterials would provide a good picture of potential hazard
sources for people exposed, either by identification or by quanti-
fication of the genera/species and contaminants involved
[11,30,58]. Moreover, the prevalence of microbial patterns related
to specific materials should give information that would be helpful
in the prevention of microbial contamination.

Some authors have reported various factors likely to be involved
in the microbial contamination of building materials, such as hu-
midity and material type (gypsum board, wallpaper, mortar, paint,
etc.). It should be noted that most studies available in the literature
focus on damp buildings and water-damaged building materials
when investigating the presence of microorganisms. Humidity is
believed to have an impact on microbial growth by increasing both
the concentration and diversity of microorganisms on water-
damaged surfaces [6,11,65]. Correlations between building mate-
rial types and microorganisms present have been investigated in
some studies. Species belonging to the genus Penicillium are the
most frequently recovered microorganisms in all kinds of building
materials [9,11,27,28,58,59]. Aspergillus species are commonly
found on ceramic-type materials (concrete, mortar) and paints and
glues [27,28,58]. The unexpectedly high occurrence of Stachybotrys,
especially S. chartarum, in gypsum-type materials has also been
mentioned [11,28,38,58]. According to Andersson et al., a syner-
gistic relationship with potential dinitrogen fixers, also found in
large amounts in these materials, may explain the massive
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development of Stachybotrys in such a nutrient-poor environment
[11]. Mycobacteria and Streptomyces were also widely found on
these materials [11,13,59]. However, some studies bring out corre-
lations between microorganisms and the location of sampling but
not with the nature of the materials. Only the sampling locations,
such as “walls”, “ceiling” or “floor”, are specified and no qualitative
indications are provided concerning surfaces [6,10,45].

Table 2 summarises the different genera and species identified
in situ (dwellings, schools or other buildings) on different materials
in 9 studies found in the literature. The identificationmethod is also
mentioned. This is not an exhaustive list but it shows the micro-
organisms most frequently isolated and identified on indoor sur-
face samples. Cladosporium, Penicillium, Aspergillus and
Stachybotrys genera are the most frequently isolated whatever the
technique, the environmental condition or the type of material.
This classification of mould prevalence on surfaces was confirmed
by a report by the International Energy Agency. Similarities can be
observed with results from air samples [73]. Associated species are
most commonly C. sphaerospermum, P. chrysogenum, A. Niger,
A. versicolor, S. chartarum. Some of them, because of their well-
known toxic and allergenic roles, are included among the poten-
tially pathogenic species listed by the French Higher Council for
Public Health and the France Environment Health Association
[2,21,101].

Depending on the methodology followed, the study of samples
from indoor building materials allowed several hypotheses to be
put forward about the microbial communities present and poten-
tial contaminants. Field observations also led to hypotheses on
factors influencing growth, such as moisture and material type.
Laboratory testing on microbial growth allowed the field hypoth-
eses about microbial growth on building materials to be confirmed
or infirmed. The laboratory testing conditions include many factors
influencing growth (%RH, temperature, nutrient supplies, etc.) and
thus require particular attention.
4. Laboratory testing protocols: exposure of building
materials to microorganisms

In addition to in-situ sampling campaigns, laboratory testing for
microbial growth is also necessary to understand the phenomena
governing the development of microorganisms on building mate-
rials. Various types of tests can be performed, depending on
whether the goal of the study is to highlight the microbicidal effect
of a given material or simply to observe its behaviour (resistance/
receptivity) relative to microbial growth. The choice of some
experimental parameters such as microbial strains, moisture,
inoculation technique, etc. is defined by the type of test to be
conducted.
4.1. Standards

Microbial growth in general and fungal growth in particular can
take an extremely long time (from several days to several months),
so standards generally recommend optimal growth conditions, i.e.
high relative humidity, temperature around 30 �C and nutrient
input in order to limit the time for reading and interpreting.
However, this approach differs from natural growth conditions.
Table 3 gives an overview of existing standards onmicrobial growth
testing in laboratories. The table compares parameters of each
standard and type of testing (antibacterial activity, fungus resis-
tance, biodeterioration, etc.). The results are generally evaluated by
visual inspection of the inoculated area or by measuring the mass
variation of the samples. The table also shows that high tempera-
ture and humidity are always specified, whatever the test.
The standards for antibacterial activity testing recommend short
durations (few hours) and control of the contaminated area is
achieved by putting a transparent film (or glass) with a defined
surface area over the inoculum.

4.2. Selection of strains

Microbial strains for testing can be recommended by standards
or chosen because they satisfy specific criteria (resistance, acid
production, occurrence in specific environments, etc.). The strains
to be used during the test can either be supplied by a specialised
laboratory (“collection strains”) [5,46,86,102e104], or come from
{in-situ} sampling (“wild strains”) [68,86,103,105,106]. Allion sug-
gests that the nature of the strain, “collection” or “wild”, has an
influence on the composition of the cytoplasmic membrane and
thus might affect the bio-adhesive behaviour of the microorgan-
isms toward some disinfectants [84].

4.3. Inoculation

Fig. 4 presents the most widespread inoculation techniques and
their frequency of use as estimated from twenty publications.
Droplet (by pipetting) and spraying are the most common tech-
niques. The pipette allows a specific amount of cell suspension to be
dripped on to the surface of a material [36,46,68,102,105,107],
whereas spraying, dry or wet, produces a relatively homogeneous
distribution but a less accurate amount of suspension, over a large
area [5,61,87,104,108,109].

To overcome the lack of uniformity of cell distribution due to
inoculation by droplet, some standards recommend applying a
transparent plastic film or a glass slide directly on the inoculum.
The inoculum then spreads under the film (glass), which forms a
controlled cellular distribution surface [110,111].

In his work on fungal resistance tests for interior finishes, Adan
objects to the use of aqueous suspensions for inoculation by
explaining that they may cause an initial disequilibrium between
the porous substrate and the adjacent air and provide favourable
humidity conditions for fungal growth [88]. He transferred dry
conidia by brushing the sample surface using dry sterile cotton
swabs.

Hoang et al. developed a natural inoculation technique in which
humidified materials were exposed to the ambient air of a resi-
dential house for 10 days [36].Their method is based on the use of
an environmental chamber, in which the samples are inoculated
not directly by the experimenter but through spore production by
the microorganisms present in a potting soil deposited in the bot-
tom of the chamber. In this type of experiment, guidelines [112,113]
recommend carrying out a virulence test, which usually involves
placing agar plates in the chamber and checking the time required
for microbial growth to cover the whole surface of the agar plates.
This virulence test ensures the airborne contamination of samples.

4.4. Incubation conditions

The incubation period is the test period during which microor-
ganisms are in contact with the material. Incubation conditions
(humidity, temperature and nutrient supply) have a direct influ-
ence on the microbial growth. Table 4 summarises the various in-
cubation conditions found in the literature on testing microbial
growth on building materials.

High relative humidity of the air enhances microbial growth
during experiments. For example, all the standards for microbial
investigation onmaterials recommend that the relative humidity of
the incubation chamber should be between 70% and 97% depend-
ing on the test [110,111,114e117]. During short-term testing



Table 2
Microorganisms identified most frequently on surfaces in indoor environment. N.I. ¼ Not identified. ‘þ’ ¼ genus found on the corresponding material.

Genera Species Materials Identification Ref.

Cladosporium Ulocladium Alternaria Aspergillus Penicillium Stachybotrys Chaetomium Acremonium Bacteria

þ þ þ þ P. chrysogenum, Stachybotrys spp.,
Ulocladium spp.

Gypsum board, wallpaper Cultures and Observations [28]

þ þ A. fumigatus,
A. melleus, A. niger,
A. ochraceus

Concrete, floor

<10% <10% <10% þ <10% <10% þ A. versicolor. Actinobacteria Wood Cultures and
Observations

[58]
þ <10% <10% þ þ <10% þ Wallpaper
<10% <10% <10% þ þ þ Gypsum board
þ <10% <10% þ <10% <10% þ þ Mortar, concrete,

bricks

þ þ þ þ þ þ A. niger, A. versicolor,
P. expansum, P. brevicompactum,
P. chrysogenum, C. cladosporoide,
S. chartarum, U. chartarum,
A. alternata

Paint, gypsum board,
wallpaper, wood, etc.

Cultures and
Observations

[62]

þ þ þ þ þ þ sp. Wood, chipboard,
cement, wallpaper, bricks,
etc.

Cultures and
Observations

[30]

þ þ þ þ S. chartarum,
P. aurantiogriseum,
A. versicolor. Gram�

Gypsum board, dusts Molecular,
chemical

[11]

þ þ þ þ Streptomycetes spp. Painted plaster Molecular [59]

þ þ þ þ þ sp. N.I. Cultures and
Observations

[6]

þ þ þ þ þ C. sphaerospermum,
P. chrysogenum, A. versicolor,
A. alternata, S. chartarum

N.I. Observations,
molecular

[10]

þ þ <10% þ þ <10% P. chrysogenum, P. olsonii,
C. sphaerospermum,
C. cladosporiorides, A. versicolor,
A. fumigatus, A. niger

N.I. Observations,
molecular

[45]
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Table 3
Non-exhaustive list of standards and impacting parameters for laboratory testing: exposure of materials to microorganisms.

Standards Type of test Materials Microorganisms Inoculation Specific conditions T �C, %HR Duration

JIS Z 2801
[110]

Antibacterial activity Antibacterial products
(plastics, metals,
ceramics, etc.)

E. coli, S. aureus Droplet Contaminated surface control (film) 35 �C, 90% 24 h

ISO 27447
[111]

Antibacterial activity Ceramics: semiconducting
photocatalytic

E. coli, S. aureus,
Klebsiella pneumoniae

Droplet Contaminated surface control (film) e 4 he8 h

NF EN ISO 846 [114] Biodeterioration,
fungistatic activity

Plastics A. niger, A. terreus,
P. funiculosu, P. ochroloron,
Paecitomyces variotii,
Gliocladium virens,
C. globosu, Aureobasidium
pullulans, Scopulariopsis
brevicaulis. Pseudomonas
aeruginosa (bacteria)

Droplet or spraying Nutrient medium
incomplete/complete

20e35 �C, 95% z4 weeks

ASTM D 3273
[112]

Fungistatic activity Interior coatings soil contaminated with:
A. pullulans, A. niger,
Penicillium sp.

Aerial (environmental
chamber)

e 32 �C, 95% 4 weeks

ASTM D 6329
[115]

Biodeterioration,
fungistatic activity

Building materials Soil contaminated with:
Aspergillus spp., Stachybotrys
chartarum, Fusarium
moniliforme, Penicillium spp.,
Cladosporium spp.

Aerial (environmental
chamber)

e 32 �C, 95% 4 weeks

EUROCAE ED-14E [116] Fungus resistance Airborne equipment A. niger, A. flavus, A. versicolor,
Penicillium funiculosum,
Chaetomium globosum

Spraying Contaminated surface control 30� , 97% 4 weeks

XP ENV 807
[113]

Resistance against
microorganisms
from soil

Wood preservative
products
(paint, stain, etc.)

Natural soil Burying in contaminated
soil

e 27 �C, 70% 8, 16, 24,
32 weeks

XP ENV 12404 [117] Fungicidal-fungistatic
activity

Mortar-masonry
preservative products
(paint, stain, etc.)

Serpula lacrymans (or other dry
rot fungus depending on region)

Contact with contaminated
medium

Complete nutrient medium 22 �C, 70% 12 weeks
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Fig. 4. Inoculation techniques used in laboratory experiments on building materials.
Frequency of use estimated from 20 papers.
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(typically a few hours), inoculation is usually performed with an
aqueousmedium, by depositing drops or spraying. In this case, high
relative humidity prevents drying of the inoculum. In other cases,
high relative humidity helps to maintain optimal growth condi-
tions for microorganisms in order to reduce the test duration to a
minimum. The main devices used for controlling the relative hu-
midity of the air are: saturated salt solutions [102], vermiculite [66],
water-filled container [46], and air-flow controlled systems [7]. If
the aim is to use optimal growth conditions to reduce testing times,
it is sometimes necessary to prepare the samples beforehand.
Standards on fungal proliferation recommend placing samples in a
controlled atmosphere with a relative humidity higher than 50% for
several days. Various studies have used such conditioning
[5,7,36,68,102]. This preparation may be a key step in the assess-
ment of microbial contamination on building materials.

Microbial growth is also strongly dependent on cardinal tem-
peratures [85]. Cardinal temperatures are the minimum, maximum
and optimum growth temperatures and are specific to the selected
species. Standards recommend choosing the temperature for in-
cubation with respect to the species Table 3. The testing process is
therefore carried out in an incubator at a temperature generally
Table 4
Incubation conditions for microbial growth testing on building materials. NS ¼ Not spec

Ref. Materials T �C %HR %HR

[34] Wood, gypsum board, wallpaper, … 20e3 75, 80, 95 Airtig
[87] Concrete 30 High Cont
[102] Ceiling tiles 21 ± 3 NS Satur
[103] Natural gypsum, phosphogypsum 32 95e100 NS

25 100 NS
[105] cellulose-containing and inorganic

ceiling tiles
25 80 Filter

[5] Cellular concrete, gypsum-carton board,
paint gypsum-carton board

22e25 70e80 NS

[68] Mortar plastering 25 75, 85, 100 Satur
[27] Wood, gypsum board, ceiling tile e 75, 85, 95 Clima
[86] Plasterboard 20e23 NS Stand

10 m
[7] Gypsum board, concrete, mortar,

wallpaper, etc.
25 69, 78, 86 43.5
20 76, 86, 90 With
10 80, 90, 95
5 79, 87, 91

[118] Wood frame wall assemblies 20e35 70e95 Clima
[107] Concrete, mortar 25 95e100 NS
[66] Cement paste 26 NS Mois
[36] Green material (sunflower board, bamboo

flooring, etc.)
30 90e95 Satur

[104] Plasterboards and aluminium 28 95 Clima
[109] Wood, gypsum, cement-based board, etc. 10, 22 75e95 Clima
higher than 25 �C. Tests are also performed at room temperature
when the aim is to use field conditions.

The addition of a nutrient source (agar, broth, etc.) to a substrate
provides sustainable and accelerated microbial growth but is far
from representing actual growth conditions. However, in the
absence of a nutrient source, microbial growth is uncertain and
takes much longer. In addition, the results obtained in experiments
with or without nutrient supply do not provide the same infor-
mation. NF EN ISO 846 describes two different tests in particular. In
one case, an incomplete nutrient media (without carbon source)
enables the inherent resistance of the substrate tomicrobial growth
to be observed: microorganisms can grow only at the expense of
the material. In the other case, growth is promoted by providing a
complete nutrient medium: any growth inhibition shows a fungi-
static effect of the material [114].

4.5. Materials

Table 4 shows the different types of materials used in studies on
artificial contamination. Some studies focus on concrete and
mortar, wallpaper or ceiling tiles, but plaster-based or gypsum-
based materials are most frequently tested. It is important to note
that very few studies undertake physicochemical and surface
characterisation of the materials to establish relationships between
adhesion or proliferation mechanisms on surfaces and the chemi-
cal/mineralogical nature of the material. Generally, the materials
tested are those found in the indoor environment. These materials
are either collected on site or purchased from a supplier. In addi-
tion, most trials focus primarily onmicrobial growth in terms of the
toxicity, resistance to growth or antimicrobial effect of the mate-
rials; they are rarely conducted to describe and explain the sub-
strateeorganism interactions during the microbial growth process.

5. Bio-receptivity of materials e determining factors

In this part, various factors highlighted by authors in laboratory
studies are discussed. The results point out, in particular, the major
influence of water and of the chemical composition and pH of
materials.
ified.

Control Nutrient input Testing duration

ht chamber þ saturated salt solutions No 31 and 55 days
inuous air flow Yes (spraying) 174 days
ated salt solution No 28 days

No 4 weeks
Yes/No 14 days

ed air flow, standing water Yes/No 10 days

Yes (spraying) 2 years

ated salt solution Yes (flooding) 30 days
tic chamber þ saturated salt solutions No 5 weeks
ing water þ filtered air flow (Once a day,
in, 400 ml/min)

No Until growth
stabilisation

cm Controlled air flow system 4*No 7 months
waterbath 4 months

4 months
4 months

tic chamber No 19, 18, 16 weeks
Yes (spraying) 7 days

tened vermiculite No 4 weeks
ated salt solution (K2SO4) Yes (various) 3 to 8 weeks

tic chamber No 45 days
tic chamber þ controlled air flow No 12 weeks
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5.1. Water activity e equilibrium relative humidity

The major role of water on microbial growth is widely reported
by the literature. According to the International Energy Agency, the
susceptibility of substrates in dwellings tomould largelydepends on
thewater activity [73]. Thewater activity, aw, of a solid (or a liquid) is
directly linked to thewaterpotential that affects thepressureson the
cell wall of a microorganism [119,120]. When water balance is
reached in a system, water activity is defined as the ratio of partial
vapour pressure to the pressure of pure water (saturated vapour
pressure), i.e. 1/100 of the equilibrium relative humidity (ERH) for a
defined temperature. The term “water activity” is widely used, the
activity is easy tomeasure, and itsmajor impactonmicrobial growth
has been studied for many years [32,73,121e126]. Microbial growth
is no longer limited by water activity for values greater than 0.7 (up
to approximately 1, which is the maximum value of aw) for most
microorganisms [73,120,127]. It should be noted that water avail-
ability and temperature are interdependent and, for example,
increasing temperature has been found to lead to a reduction in the
aw requirement of the moulds [32,33].

Actually, microbial investigations on building materials tend to
reason in terms of ERH [54,7,65,109,128]. It appears that construc-
tionmaterials become the target of microbial growthwhen the ERH
reaches a value greater than 70% for wooden materials, 85% for
gypsum-board and around 90e95% for cementitious and concrete
materials [7,35]. The works of Johansson et al. provide different
ranges of critical %RH (yielding values enabling microbial growth
after 12 weeks of incubation) according to the nature of material
[109].They also highlight the influence of the temperature, the in-
cubation time and the assessment criteria for mould growth on the
results of such testing. Adan reported a significant increase of the
rate of development of P. chrysogenum during testing on gypsum
substrates when raising RH from 86 to 97% [88].In addition, various
authors have suggested that fungal growth is minimal under non-
wetting conditions at 85e95% RH and have pointed out that wet-
ting events favour the germination, the proliferation, and the di-
versity of mould on building materials [27,34,38,118,129].

Several studies also show that ERHmeasurements could be used
as amicrobial contamination indicator for constructionmaterials in
water-damaged buildings [54,65]. Pasanen et al. stated that ERH of
a material describes the water availability for microorganisms
better than the moisture content does [54]. Some authors have
even developedmathematical models for predicting contamination
by moulds, which use RH as a major parameter [88,130e132].

5.2. Chemical composition

The components of colonised materials are a potential nutrient
source that can favour the development of microorganisms
[6,88,104,133]. The works of Hoang et al. and Gutarowska indicate
that cellulose-based materials are more sensitive to contamination
than inorganic materials (gypsum, mortar, concrete, etc.) [36,37]
because cellulose can be metabolised by the microorganisms.
Moreover, Hoang et al. state that the intake of dust, organic com-
pounds, etc. from outside can also be a nutrient source on a wall
and this is a factor that increases the risk of colonisation, even on
materials that are not naturally sensitive, such as plasterboard [36].
Besides, the addition of a carbon source (carboxylmethyl cellulose)
or emulsion paint, for example, can furnish nutrients that also
induce a reduction of the aw requirement of moulds [32,33].

5.3. pH

Most bacteria prefer neutral pH. Thus, building materials with
pH levels between 6 and 8 are more sensitive to microbial
colonisation than cementitious materials, which are alkaline (pH
around 12e13) and therefore relatively insensitive to colonisation
at early ages. However, over time, the carbonation process reduces
the pH of these materials to values around 9, which allows mi-
crobial growth. Some studies deal with the contamination of
mortars that have undergone accelerated carbonation and show
that their bio-receptivity is considerably increased [66,134,135].
These materials thus become the target of significant contamina-
tion. A study by Tran et al. also confirms the crucial influence of pH
on the colonisation of mortars by phototrophic algae. In this work,
the colonisation of carbonated mortars occurs earlier (15e20 days)
and spreads faster: the contamination of whole surface (100%) is
reached after around 90 days on healthy mortar and after only 30
days on carbonated ones [40].

5.4. Physical properties of surface

It is widely agreed that the proliferation and growth of micro-
organisms on building materials are conditioned by the presence of
nutrients and sufficient available water. It should be noted that
most building materials are characterised by high porosity and
surface roughness. The high porosity gives them particular behav-
iour regarding water absorption. When the environment provides
high relative humidity or moisture events, porous materials can
become supplies of water for microorganisms and offer them a
larger growth subsurface [36]. In addition, surface roughness and
porosity could favour the attachment of nutrient components car-
ried by dust resulting from the activity in buildings. It was also
shown that treating cement mortars with water repellent com-
pounds decreased the rate of algal fouling at their surface [136].

The study by Tran et al. [40] also demonstrates the influence of
roughness on the colonisation of mortars by algae. They observe
that the samples with rough surfaces are covered much faster than
smoother samples. Asperities on surfaces promote the attachment
of algae and then favour colonisation [39e41]. On the other hand,
Adan observed that decreasing the surface roughness of gypsum-
based finishes accelerated fungal growth, with a more pro-
nounced effect for low values of roughness [88]. He suggested that
the interface areas of fungal structures were then enlarged, which
promoted interactive processes. Nevertheless, he noted a slight
delay in fungal growth for gypsumwith low porosity (water/binder
ratio <0.6), which would be explained by a probably decreased
availability of nutrients [88].

These works appear to support the hypothesis by Coppock and
Cookson that mould growth could be related to the porosity and
possibly the pore-size distribution of substrates, even though no
clear correlations have been established yet [137].

Various studies have already focused on the phenomena
involved in the adhesion of microorganisms to non-porous mate-
rials, such as metals, glasses, plastics, etc. [84,138,139] and the
mechanisms of bacterial adhesion to biomaterials and bacter-
iaematerial interactions [140]. These studies highlight the impor-
tant role of contact angle, and physicochemical and electrochemical
reactions that can occur between the substrate and adherent or-
ganisms. However, this kind of investigation has hardly been con-
ducted, if at all, on building materials since their porous nature and
their behaviour towards water make this analysis even more
complex. This hinders the understanding of mechanisms of mi-
crobial growth on these materials, making interpretations and
predictions of proliferation relatively difficult.

6. Conclusion

In the framework of indoor air quality degradation caused by
microorganisms, the study of microbial proliferation on building
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materials is often suggested. In-situ microbial investigations on
building materials have been carried out to give a better picture of
the indoor microflora and identify potential contaminants, which
could be connected with health hazards for the occupants. Various
sampling and analysis methods have been tested in investigations
dealing with the microbial contamination of building materials.
Swab sampling, adhesive tape sampling and contact plate sampling
are methods initially developed in microbiology for smooth sur-
faces and so are not very suitable for this kind of rough, porous,
dusty materials. The few studies focusing on their efficiency on
concrete show very low values compared to glass or steel. There is a
clear need to adapt and standardise methods or to diversify the
techniques used to be able to report the microbial populations
actually present on a building material surface as accurately as
possible. In addition, cultures, observations, and chemical and
molecular analyses provide a wide range of methods for microbial
investigations depending on the purpose of the study. Stand-
ardisation would be helpful in the choice of a methodology, by
considering different parameters such as the relevant species (if
known), the aim of the study, the limits of detection, etc. The
presented studies list the different organisms, some potentially
toxic and allergenic, that colonise surfaces depending on several
factors such as material type and moisture. The fungal genera most
frequently found in indoor environments, all techniques taken
together, are Cladosporium, Penicillium, Aspergillus and Stachybo-
trys; the bacteria are Gram negative bacteria and mycobacteria.

Laboratory testing gives information for a better understanding
of the phenomena governing microbial development on building
materials. Standards have been developed to assess the prolifera-
tion resistance and antimicrobial activity of some materials. Few
standards are suitable for building materials such as gypsum or
cementitiousmaterials, which are generally highly porous and have
specific chemical compositions. These standards usually recom-
mend specific testing conditions to enhance microbial growth and
reduce the durations of tests, i.e. high temperature (20 �C), high
humidity (<70%) and a nutrient intake. Although these conditions
provide sustainable and accelerated microbial growth, they are
very different from actual conditions on building material in an
indoor environment. The contamination is generally estimated by
surface observations or CFU counting. It should be noted that very
few correlations between the intensity/nature of proliferation and
the chemical/mineralogical nature of the material are reported in
the literature. There is wide agreement on themajor action of water
on microbial growth: growth on building materials is favoured for
equilibrium relative humidity values higher than 70%. The chemical
composition and the pH of materials also influence microbial
growth. The characterisation of the physicochemical interactions
between substrates and microorganisms and the adhesive prop-
erties of the microorganisms themselves have not yet been studied
for building materials exposed to indoor conditions. This lack of
information significantly hinders the understanding and prediction
of microbial growth on building materials.
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